ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.04300
17
0

Equivariant Machine Learning Decoder for 3D Toric Codes

6 September 2024
Oliver Weissl
Evgenii Egorov
ArXivPDFHTML
Abstract

Mitigating errors in computing and communication systems has seen a great deal of research since the beginning of the widespread use of these technologies. However, as we develop new methods to do computation or communication, we also need to reiterate the method used to deal with errors. Within the field of quantum computing, error correction is getting a lot of attention since errors can propagate fast and invalidate results, which makes the theoretical exponential speed increase in computation time, compared to traditional systems, obsolete. To correct errors in quantum systems, error-correcting codes are used. A subgroup of codes, topological codes, is currently the focus of many research papers. Topological codes represent parity check matrices corresponding to graphs embedded on a ddd-dimensional surface. For our research, the focus lies on the toric code with a 3D square lattice. The goal of any decoder is robustness to noise, which can increase with code size. However, a reasonable decoder performance scales polynomially with lattice size. As error correction is a time-sensitive operation, we propose a neural network using an inductive bias: equivariance. This allows the network to learn from a rather small subset of the exponentially growing training space of possible inputs. In addition, we investigate how transformer networks can help in correction. These methods will be compared with various configurations and previously published methods of decoding errors in the 3D toric code.

View on arXiv
@article{weissl2025_2409.04300,
  title={ Equivariant Machine Learning Decoder for 3D Toric Codes },
  author={ Oliver Weissl and Evgenii Egorov },
  journal={arXiv preprint arXiv:2409.04300},
  year={ 2025 }
}
Comments on this paper