ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.07091
32
1

Learning Task Specifications from Demonstrations as Probabilistic Automata

11 September 2024
Mattijs Baert
Sam Leroux
Pieter Simoens
ArXivPDFHTML
Abstract

Specifying tasks for robotic systems traditionally requires coding expertise, deep domain knowledge, and significant time investment. While learning from demonstration offers a promising alternative, existing methods often struggle with tasks of longer horizons. To address this limitation, we introduce a computationally efficient approach for learning probabilistic deterministic finite automata (PDFA) that capture task structures and expert preferences directly from demonstrations. Our approach infers sub-goals and their temporal dependencies, producing an interpretable task specification that domain experts can easily understand and adjust. We validate our method through experiments involving object manipulation tasks, showcasing how our method enables a robot arm to effectively replicate diverse expert strategies while adapting to changing conditions.

View on arXiv
Comments on this paper