ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.07796
54
0

In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation

12 September 2024
Mohammad Mehdi Rastikerdar
Jin Huang
Hui Guan
Deepak Ganesan
ArXivPDFHTML
Abstract

Resource-constrained IoT devices increasingly rely on deep learning models for inference tasks in remote environments. However, these models experience significant accuracy drops due to domain shifts when encountering variations in lighting, weather, and seasonal conditions. While cloud-based retraining can address this issue, many IoT deployments operate with limited connectivity and energy constraints, making traditional fine-tuning approaches impractical. We explore this challenge through the lens of wildlife ecology, where camera traps must maintain accurate species classification across changing seasons, weather, and habitats without reliable connectivity. We introduce WildFit, an autonomous in-situ adaptation framework that leverages the key insight that background scenes change more frequently than the visual characteristics of monitored species. WildFit combines background-aware synthesis to generate training samples on-device with drift-aware fine-tuning that triggers model updates only when necessary to conserve resources. Through extensive evaluation on multiple camera trap deployments, we demonstrate that WildFit significantly improves accuracy while greatly reducing adaptation overhead compared to traditional approaches.

View on arXiv
Comments on this paper