ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.07841
23
2

TSELM: Target Speaker Extraction using Discrete Tokens and Language Models

12 September 2024
Beilong Tang
Bang Zeng
Ming Li
ArXivPDFHTML
Abstract

We propose TSELM, a novel target speaker extraction network that leverages discrete tokens and language models. TSELM utilizes multiple discretized layers from WavLM as input tokens and incorporates cross-attention mechanisms to integrate target speaker information. Language models are employed to capture the sequence dependencies, while a scalable HiFi-GAN is used to reconstruct the audio from the tokens. By applying a cross-entropy loss, TSELM models the probability distribution of output tokens, thus converting the complex regression problem of audio generation into a classification task. Experimental results show that TSELM achieves excellent results in speech quality and comparable results in speech intelligibility.

View on arXiv
Comments on this paper