ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.08056
18
1

Expansive Supervision for Neural Radiance Field

12 September 2024
Weixiang Zhang
Shuzhao Xie
Shijia Ge
Wei Yao
Chen Tang
Zhi Wang
ArXivPDFHTML
Abstract

Neural Radiance Field (NeRF) has achieved remarkable success in creating immersive media representations through its exceptional reconstruction capabilities. However, the computational demands of dense forward passes and volume rendering during training continue to challenge its real-world applications. In this paper, we introduce Expansive Supervision to reduce time and memory costs during NeRF training from the perspective of partial ray selection for supervision. Specifically, we observe that training errors exhibit a long-tail distribution correlated with image content. Based on this observation, our method selectively renders a small but crucial subset of pixels and expands their values to estimate errors across the entire area for each iteration. Compared to conventional supervision, our approach effectively bypasses redundant rendering processes, resulting in substantial reductions in both time and memory consumption. Experimental results demonstrate that integrating Expansive Supervision within existing state-of-the-art acceleration frameworks achieves 52% memory savings and 16% time savings while maintaining comparable visual quality.

View on arXiv
@article{zhang2025_2409.08056,
  title={ Expansive Supervision for Neural Radiance Field },
  author={ Weixiang Zhang and Shuzhao Xie and Shijia Ge and Wei Yao and Chen Tang and Zhi Wang },
  journal={arXiv preprint arXiv:2409.08056},
  year={ 2025 }
}
Comments on this paper