ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.09079
26
0

D3-GNN: Dynamic Distributed Dataflow for Streaming Graph Neural Networks

10 September 2024
Rustam Guliyev
Aparajita Haldar
Hakan Ferhatosmanoglu
    GNN
ArXivPDFHTML
Abstract

Graph Neural Network (GNN) models on streaming graphs entail algorithmic challenges to continuously capture its dynamic state, as well as systems challenges to optimize latency, memory, and throughput during both inference and training. We present D3-GNN, the first distributed, hybrid-parallel, streaming GNN system designed to handle real-time graph updates under online query setting. Our system addresses data management, algorithmic, and systems challenges, enabling continuous capturing of the dynamic state of the graph and updating node representations with fault-tolerance and optimal latency, load-balance, and throughput. D3-GNN utilizes streaming GNN aggregators and an unrolled, distributed computation graph architecture to handle cascading graph updates. To counteract data skew and neighborhood explosion issues, we introduce inter-layer and intra-layer windowed forward pass solutions. Experiments on large-scale graph streams demonstrate that D3-GNN achieves high efficiency and scalability. Compared to DGL, D3-GNN achieves a significant throughput improvement of about 76x for streaming workloads. The windowed enhancement further reduces running times by around 10x and message volumes by up to 15x at higher parallelism.

View on arXiv
Comments on this paper