ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.09332
22
0

Improvements of Discriminative Feature Space Training for Anomalous Sound Detection in Unlabeled Conditions

14 September 2024
Takuya Fujimura
Ibuki Kuroyanagi
Tomoki Toda
ArXivPDFHTML
Abstract

In anomalous sound detection, the discriminative method has demonstrated superior performance. This approach constructs a discriminative feature space through the classification of the meta-information labels for normal sounds. This feature space reflects the differences in machine sounds and effectively captures anomalous sounds. However, its performance significantly degrades when the meta-information labels are missing. In this paper, we improve the performance of a discriminative method under unlabeled conditions by two approaches. First, we enhance the feature extractor to perform better under unlabeled conditions. Our enhanced feature extractor utilizes multi-resolution spectrograms with a new training strategy. Second, we propose various pseudo-labeling methods to effectively train the feature extractor. The experimental evaluations show that the proposed feature extractor and pseudo-labeling methods significantly improve performance under unlabeled conditions.

View on arXiv
Comments on this paper