ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.10142
61
0

AALF: Almost Always Linear Forecasting

17 January 2025
Matthias Jakobs
Thomas Liebig
    AI4TS
ArXivPDFHTML
Abstract

Recent works for time-series forecasting more and more leverage the high predictive power of Deep Learning models. With this increase in model complexity, however, comes a lack in understanding of the underlying model decision process, which is problematic for high-stakes application scenarios. At the same time, simple, interpretable forecasting methods such as ARIMA still perform very well, sometimes on-par, with Deep Learning approaches. We argue that simple models are good enough most of the time, and that forecasting performance could be improved by choosing a Deep Learning method only for few, important predictions, increasing the overall interpretability of the forecasting process. In this context, we propose a novel online model selection framework which learns to identify these predictions. An extensive empirical study on various real-world datasets shows that our selection methodology performs comparable to state-of-the-art online model selections methods in most cases while being significantly more interpretable. We find that almost always choosing a simple autoregressive linear model for forecasting results in competitive performance, suggesting that the need for opaque black-box models in time-series forecasting might be smaller than recent works would suggest.

View on arXiv
Comments on this paper