ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.10587
16
2

SoccerNet 2024 Challenges Results

16 September 2024
A. Cioppa
Silvio Giancola
Vladimir Somers
Victor Joos
Floriane Magera
Jan Held
Seyed Abolfazl Ghasemzadeh
Xin Zhou
Karolina Seweryn
Mateusz Kowalczyk
Zuzanna Mróz
Szymon Łukasik
Michał Hałoń
Hassan Mkhallati
A. Deliège
Carlos Hinojosa
Karen Sanchez
Amir M. Mansourian
Pierre Miralles
Olivier Barnich
Christophe De Vleeschouwer
Alexandre Alahi
Bernard Ghanem
Marc Van Droogenbroeck
Adam Gorski
Albert Clapés
Andrei Boiarov
Anton Afanasiev
Artur Xarles
Atom Scott
Byoungkwon Lim
Calvin Yeung
Cristian Gonzalez
Dominic Rufenacht
Enzo Pacilio
Fabian Deuser
Faisal Sami Altawijri
Francisco Cachón
HanKyul Kim
Haobo Wang
Hyeonmin Choe
Hyunwoo J Kim
Il-Min Kim
Jae-Mo Kang
Jamshid Tursunboev
Jian Yang
Jihwan Hong
Jimin Lee
Jing Zhang
J. Lee
Kexin Zhang
Konrad Habel
Licheng Jiao
Linyi Li
Marc Gutiérrez-Pérez
Marcelo Ortega
Menglong Li
Milosz Lopatto
Nikita Kasatkin
Nikolay Nemtsev
Norbert Oswald
Oleg Udin
Pavel Kononov
Pei Geng
Saad Ghazai Alotaibi
S. Kim
Sergei Ulasen
Sergio Escalera
Shanshan Zhang
Shuyuan Yang
Sunghwan Moon
T. Moeslund
Vasyl Shandyba
V. Golovkin
Wei-Ming Dai
WonTaek Chung
Xinyu Liu
Yongqiang Zhu
Youngseo Kim
Yuan Li
Yuting Yang
Yuxuan Xiao
Zehua Cheng
Zhihao Li
ArXivPDFHTML
Abstract

The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team. These challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding. This year, the challenges encompass four vision-based tasks. (1) Ball Action Spotting, focusing on precisely localizing when and which soccer actions related to the ball occur, (2) Dense Video Captioning, focusing on describing the broadcast with natural language and anchored timestamps, (3) Multi-View Foul Recognition, a novel task focusing on analyzing multiple viewpoints of a potential foul incident to classify whether a foul occurred and assess its severity, (4) Game State Reconstruction, another novel task focusing on reconstructing the game state from broadcast videos onto a 2D top-view map of the field. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.

View on arXiv
Comments on this paper