ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.11630
26
1

Speaking from Coarse to Fine: Improving Neural Codec Language Model via Multi-Scale Speech Coding and Generation

18 September 2024
Haohan Guo
Fenglong Xie
Dongchao Yang
Xixin Wu
Helen Meng
ArXivPDFHTML
Abstract

The neural codec language model (CLM) has demonstrated remarkable performance in text-to-speech (TTS) synthesis. However, troubled by ``recency bias", CLM lacks sufficient attention to coarse-grained information at a higher temporal scale, often producing unnatural or even unintelligible speech. This work proposes CoFi-Speech, a coarse-to-fine CLM-TTS approach, employing multi-scale speech coding and generation to address this issue. We train a multi-scale neural codec, CoFi-Codec, to encode speech into a multi-scale discrete representation, comprising multiple token sequences with different time resolutions. Then, we propose CoFi-LM that can generate this representation in two modes: the single-LM-based chain-of-scale generation and the multiple-LM-based stack-of-scale generation. In experiments, CoFi-Speech significantly outperforms single-scale baseline systems on naturalness and speaker similarity in zero-shot TTS. The analysis of multi-scale coding demonstrates the effectiveness of CoFi-Codec in learning multi-scale discrete speech representations while keeping high-quality speech reconstruction. The coarse-to-fine multi-scale generation, especially for the stack-of-scale approach, is also validated as a crucial approach in pursuing a high-quality neural codec language model for TTS.

View on arXiv
Comments on this paper