ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.11694
29
1

From Words to Wheels: Automated Style-Customized Policy Generation for Autonomous Driving

18 September 2024
Xu Han
Xianda Chen
Zhenghan Cai
Pinlong Cai
Meixin Zhu
Xiaowen Chu
ArXivPDFHTML
Abstract

Autonomous driving technology has witnessed rapid advancements, with foundation models improving interactivity and user experiences. However, current autonomous vehicles (AVs) face significant limitations in delivering command-based driving styles. Most existing methods either rely on predefined driving styles that require expert input or use data-driven techniques like Inverse Reinforcement Learning to extract styles from driving data. These approaches, though effective in some cases, face challenges: difficulty obtaining specific driving data for style matching (e.g., in Robotaxis), inability to align driving style metrics with user preferences, and limitations to pre-existing styles, restricting customization and generalization to new commands. This paper introduces Words2Wheels, a framework that automatically generates customized driving policies based on natural language user commands. Words2Wheels employs a Style-Customized Reward Function to generate a Style-Customized Driving Policy without relying on prior driving data. By leveraging large language models and a Driving Style Database, the framework efficiently retrieves, adapts, and generalizes driving styles. A Statistical Evaluation module ensures alignment with user preferences. Experimental results demonstrate that Words2Wheels outperforms existing methods in accuracy, generalization, and adaptability, offering a novel solution for customized AV driving behavior. Code and demo available at https://yokhon.github.io/Words2Wheels/.

View on arXiv
Comments on this paper