ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12401
16
2

MambaRecon: MRI Reconstruction with Structured State Space Models

19 September 2024
Yilmaz Korkmaz
V. Patel
    Mamba
ArXivPDFHTML
Abstract

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modalities as it provides superior resolution of soft tissues, albeit with a notable limitation in scanning speed. The advent of deep learning has catalyzed the development of cutting-edge methods for the expedited reconstruction of MRI scans, utilizing convolutional neural networks and, more recently, vision transformers. Recently proposed structured state space models (e.g., Mamba) have gained some traction due to their efficiency and low computational requirements compared to transformer models. We propose an innovative MRI reconstruction framework that employs structured state space models at its core, aimed at amplifying both long-range contextual sensitivity and reconstruction efficacy. Comprehensive experiments on public brain MRI datasets show that our model sets new benchmarks beating state-of-the-art reconstruction baselines. Code will be available (https://github.com/yilmazkorkmaz1/MambaRecon).

View on arXiv
Comments on this paper