ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12479
40
0

Learning Multi-Manifold Embedding for Out-Of-Distribution Detection

19 September 2024
Jeng-Lin Li
Ming-Ching Chang
Wei-Chao Chen
    OODD
ArXivPDFHTML
Abstract

Detecting out-of-distribution (OOD) samples is crucial for trustworthy AI in real-world applications. Leveraging recent advances in representation learning and latent embeddings, Various scoring algorithms estimate distributions beyond the training data. However, a single embedding space falls short in characterizing in-distribution data and defending against diverse OOD conditions. This paper introduces a novel Multi-Manifold Embedding Learning (MMEL) framework, optimizing hypersphere and hyperbolic spaces jointly for enhanced OOD detection. MMEL generates representative embeddings and employs a prototype-aware scoring function to differentiate OOD samples. It operates with very few OOD samples and requires no model retraining. Experiments on six open datasets demonstrate MMEL's significant reduction in FPR while maintaining a high AUC compared to state-of-the-art distance-based OOD detection methods. We analyze the effects of learning multiple manifolds and visualize OOD score distributions across datasets. Notably, enrolling ten OOD samples without retraining achieves comparable FPR and AUC to modern outlier exposure methods using 80 million outlier samples for model training.

View on arXiv
Comments on this paper