ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12622
13
0

Theoretical Analysis of Heteroscedastic Gaussian Processes with Posterior Distributions

19 September 2024
Yuji Ito
ArXivPDFHTML
Abstract

This study introduces a novel theoretical framework for analyzing heteroscedastic Gaussian processes (HGPs) that identify unknown systems in a data-driven manner. Although HGPs effectively address the heteroscedasticity of noise in complex training datasets, calculating the exact posterior distributions of the HGPs is challenging, as these distributions are no longer multivariate normal. This study derives the exact means, variances, and cumulative distributions of the posterior distributions. Furthermore, the derived theoretical findings are applied to a chance-constrained tracking controller. After an HGP identifies an unknown disturbance in a plant system, the controller can handle chance constraints regarding the system despite the presence of the disturbance.

View on arXiv
Comments on this paper