ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.12899
21
7

LI-GS: Gaussian Splatting with LiDAR Incorporated for Accurate Large-Scale Reconstruction

19 September 2024
Changjian Jiang
Ruilan Gao
Kele Shao
Yue Wang
R. Xiong
Yu Zhang
    3DV
ArXivPDFHTML
Abstract

Large-scale 3D reconstruction is critical in the field of robotics, and the potential of 3D Gaussian Splatting (3DGS) for achieving accurate object-level reconstruction has been demonstrated. However, ensuring geometric accuracy in outdoor and unbounded scenes remains a significant challenge. This study introduces LI-GS, a reconstruction system that incorporates LiDAR and Gaussian Splatting to enhance geometric accuracy in large-scale scenes. 2D Gaussain surfels are employed as the map representation to enhance surface alignment. Additionally, a novel modeling method is proposed to convert LiDAR point clouds to plane-constrained multimodal Gaussian Mixture Models (GMMs). The GMMs are utilized during both initialization and optimization stages to ensure sufficient and continuous supervision over the entire scene while mitigating the risk of over-fitting. Furthermore, GMMs are employed in mesh extraction to eliminate artifacts and improve the overall geometric quality. Experiments demonstrate that our method outperforms state-of-the-art methods in large-scale 3D reconstruction, achieving higher accuracy compared to both LiDAR-based methods and Gaussian-based methods with improvements of 52.6% and 68.7%, respectively.

View on arXiv
Comments on this paper