18
1

Revisiting Semi-supervised Adversarial Robustness via Noise-aware Online Robust Distillation

Tsung-Han Wu
Hung-Ting Su
Shang-Tse Chen
Winston H. Hsu
Abstract

The robust self-training (RST) framework has emerged as a prominent approach for semi-supervised adversarial training. To explore the possibility of tackling more complicated tasks with even lower labeling budgets, unlike prior approaches that rely on robust pretrained models, we present SNORD - a simple yet effective framework that introduces contemporary semi-supervised learning techniques into the realm of adversarial training. By enhancing pseudo labels and managing noisy training data more effectively, SNORD showcases impressive, state-of-the-art performance across diverse datasets and labeling budgets, all without the need for pretrained models. Compared to full adversarial supervision, SNORD achieves a 90% relative robust accuracy under epsilon = 8/255 AutoAttack, requiring less than 0.1%, 2%, and 10% labels for CIFAR-10, CIFAR-100, and TinyImageNet-200, respectively. Additional experiments confirm the efficacy of each component and demonstrate the adaptability of integrating SNORD with existing adversarial pretraining strategies to further bolster robustness.

View on arXiv
Comments on this paper