ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.13063
286
1

Improved Image Classification with Manifold Neural Networks

19 September 2024
Caio F. Deberaldini Netto
Zhiyang Wang
Luana Ruiz
    AI4CE
ArXiv (abs)PDFHTML
Main:4 Pages
2 Figures
Bibliography:1 Pages
Appendix:2 Pages
Abstract

Graph Neural Networks (GNNs) have gained popularity in various learning tasks, with successful applications in fields like molecular biology, transportation systems, and electrical grids. These fields naturally use graph data, benefiting from GNNs' message-passing framework. However, the potential of GNNs in more general data representations, especially in the image domain, remains underexplored. Leveraging the manifold hypothesis, which posits that high-dimensional data lies in a low-dimensional manifold, we explore GNNs' potential in this context. We construct an image manifold using variational autoencoders, then sample the manifold to generate graphs where each node is an image. This approach reduces data dimensionality while preserving geometric information. We then train a GNN to predict node labels corresponding to the image labels in the classification task, and leverage convergence of GNNs to manifold neural networks to analyze GNN generalization. Experiments on MNIST and CIFAR10 datasets demonstrate that GNNs generalize effectively to unseen graphs, achieving competitive accuracy in classification tasks.

View on arXiv
Comments on this paper