ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.13091
16
0

Interpretable Action Recognition on Hard to Classify Actions

19 September 2024
Anastasia Anichenko
Frank Guerin
Andrew Gilbert
ArXivPDFHTML
Abstract

We investigate a human-like interpretable model of video understanding. Humans recognise complex activities in video by recognising critical spatio-temporal relations among explicitly recognised objects and parts, for example, an object entering the aperture of a container. To mimic this we build on a model which uses positions of objects and hands, and their motions, to recognise the activity taking place. To improve this model we focussed on three of the most confused classes (for this model) and identified that the lack of 3D information was the major problem. To address this we extended our basic model by adding 3D awareness in two ways: (1) A state-of-the-art object detection model was fine-tuned to determine the difference between "Container" and "NotContainer" in order to integrate object shape information into the existing object features. (2) A state-of-the-art depth estimation model was used to extract depth values for individual objects and calculate depth relations to expand the existing relations used our interpretable model. These 3D extensions to our basic model were evaluated on a subset of three superficially similar "Putting" actions from the Something-Something-v2 dataset. The results showed that the container detector did not improve performance, but the addition of depth relations made a significant improvement to performance.

View on arXiv
Comments on this paper