ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.13557
16
0

Trustworthy Hate Speech Detection Through Visual Augmentation

20 September 2024
Ziyuan Yang
Ming Yan
Yingyu Chen
Hui Wang
Zexin Lu
Yi Zhang
ArXivPDFHTML
Abstract

The surge of hate speech on social media platforms poses a significant challenge, with hate speech detection~(HSD) becoming increasingly critical. Current HSD methods focus on enriching contextual information to enhance detection performance, but they overlook the inherent uncertainty of hate speech. We propose a novel HSD method, named trustworthy hate speech detection method through visual augmentation (TrusV-HSD), which enhances semantic information through integration with diffused visual images and mitigates uncertainty with trustworthy loss. TrusV-HSD learns semantic representations by effectively extracting trustworthy information through multi-modal connections without paired data. Our experiments on public HSD datasets demonstrate the effectiveness of TrusV-HSD, showing remarkable improvements over conventional methods.

View on arXiv
Comments on this paper