ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.14396
35
0

Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape

22 September 2024
Tao Li
Zhengbao He
Yujun Li
Yasheng Wang
Lifeng Shang
X. Huang
ArXivPDFHTML
Abstract

Fine-tuning large-scale pre-trained models is prohibitively expensive in terms of computational and memory costs. Low-Rank Adaptation (LoRA), a popular Parameter-Efficient Fine-Tuning (PEFT) method, provides an efficient way to fine-tune models by optimizing only a low-rank matrix. Despite recent progress made in improving LoRA's performance, the connection between the LoRA optimization space and the original full parameter space is often overlooked. A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance. In this paper, we propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.Instead of relying on the well-established sharpness-aware minimization approach, which can incur significant computational and memory burdens, we utilize random weight perturbation with a Bayesian expectation loss objective to maintain training efficiency and design a refined perturbation generation strategy for improved performance. Experiments on natural language processing and image classification tasks with various architectures demonstrate the effectiveness of our approach.

View on arXiv
Comments on this paper