ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.14672
23
1

Speechworthy Instruction-tuned Language Models

23 September 2024
Hyundong Justin Cho
Nicolaas Jedema
Leonardo F. R. Ribeiro
Karishma Sharma
Pedro Szekely
Alessandro Moschitti
Ruben Janssen
Jonathan May
    ALM
ArXivPDFHTML
Abstract

Current instruction-tuned language models are exclusively trained with textual preference data and thus are often not aligned with the unique requirements of other modalities, such as speech. To better align language models with the speech domain, we explore (i) prompting strategies grounded in radio-industry best practices and (ii) preference learning using a novel speech-based preference data of 20K samples, generated with a wide spectrum of prompts that induce varying dimensions of speech-suitability and labeled by annotators who listen to response pairs. Both human and automatic evaluation show that both prompting and preference learning increase the speech-suitability of popular instruction-tuned LLMs. Interestingly, we find that prompting and preference learning can be additive; combining them achieves the best win rates in head-to-head comparison, resulting in responses that are preferred or tied to the base model in 76.2% of comparisons on average. Lastly, we share lexical, syntactical, and qualitative analyses to showcase how each method contributes to improving the speech-suitability of generated responses.

View on arXiv
Comments on this paper