ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.14842
28
1

HW-TSC's Submission to the CCMT 2024 Machine Translation Tasks

23 September 2024
Zhanglin Wu
Yuanchang Luo
Daimeng Wei
Jiawei Zheng
Bin Wei
Zongyao Li
Hengchao Shang
Jiaxin Guo
Shaojun Li
Weidong Zhang
Ning Xie
Hao Yang
ArXivPDFHTML
Abstract

This paper presents the submission of Huawei Translation Services Center (HW-TSC) to machine translation tasks of the 20th China Conference on Machine Translation (CCMT 2024). We participate in the bilingual machine translation task and multi-domain machine translation task. For these two translation tasks, we use training strategies such as regularized dropout, bidirectional training, data diversification, forward translation, back translation, alternated training, curriculum learning, and transductive ensemble learning to train neural machine translation (NMT) models based on the deep Transformer-big architecture. Furthermore, to explore whether large language model (LLM) can help improve the translation quality of NMT systems, we use supervised fine-tuning to train llama2-13b as an Automatic post-editing (APE) model to improve the translation results of the NMT model on the multi-domain machine translation task. By using these plyometric strategies, our submission achieves a competitive result in the final evaluation.

View on arXiv
Comments on this paper