MSARS: A Meta-Learning and Reinforcement Learning Framework for SLO Resource Allocation and Adaptive Scaling for Microservices

Service Level Objectives (SLOs) aim to set threshold for service time in cloud services to ensure acceptable quality of service (QoS) and user satisfaction. Currently, many studies consider SLOs as a system resource to be allocated, ensuring QoS meets the SLOs. Existing microservice auto-scaling frameworks that rely on SLO resources often utilize complex and computationally intensive models, requiring significant time and resources to determine appropriate resource allocation. This paper aims to rapidly allocate SLO resources and minimize resource costs while ensuring application QoS meets the SLO requirements in a dynamically changing microservice environment. We propose MSARS, a framework that leverages meta-learning to quickly derive SLO resource allocation strategies and employs reinforcement learning for adaptive scaling of microservice resources. It features three innovative components: First, MSARS uses graph convolutional networks to predict the most suitable SLO resource allocation scheme for the current environment. Second, MSARS utilizes meta-learning to enable the graph neural network to quickly adapt to environmental changes ensuring adaptability in highly dynamic microservice environments. Third, MSARS generates auto-scaling policies for each microservice based on an improved Twin Delayed Deep Deterministic Policy Gradient (TD3) model. The adaptive auto-scaling policy integrates the SLO resource allocation strategy into the scheduling algorithm to satisfy SLOs. Finally, we compare MSARS with state-of-the-art resource auto-scaling algorithms that utilize neural networks and reinforcement learning, MSARS takes 40% less time to adapt to new environments, 38% reduction of SLO violations, and 8% less resources cost.
View on arXiv