Enhancing Scientific Reproducibility Through Automated BioCompute Object Creation Using Retrieval-Augmented Generation from Publications

The exponential growth in computational power and accessibility has transformed the complexity and scale of bioinformatics research, necessitating standardized documentation for transparency, reproducibility, and regulatory compliance. The IEEE BioCompute Object (BCO) standard addresses this need but faces adoption challenges due to the overhead of creating compliant documentation, especially for legacy research. This paper presents a novel approach to automate the creation of BCOs from scientific papers using Retrieval-Augmented Generation (RAG) and Large Language Models (LLMs). We describe the development of the BCO assistant tool that leverages RAG to extract relevant information from source papers and associated code repositories, addressing key challenges such as LLM hallucination and long-context understanding. The implementation incorporates optimized retrieval processes, including a two-pass retrieval with re-ranking, and employs carefully engineered prompts for each BCO domain. We discuss the tool's architecture, extensibility, and evaluation methods, including automated and manual assessment approaches. The BCO assistant demonstrates the potential to significantly reduce the time and effort required for retroactive documentation of bioinformatics research while maintaining compliance with the standard. This approach opens avenues for AI-assisted scientific documentation and knowledge extraction from publications thereby enhancing scientific reproducibility. The BCO assistant tool and documentation is available at https://biocompute-objects.github.io/bco-rag/.
View on arXiv