ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.15732
19
0

Hypothesis Clustering and Merging: Novel MultiTalker Speech Recognition with Speaker Tokens

24 September 2024
Yosuke Kashiwagi
Hayato Futami
E. Tsunoo
Siddhant Arora
Shinji Watanabe
ArXivPDFHTML
Abstract

In many real-world scenarios, such as meetings, multiple speakers are present with an unknown number of participants, and their utterances often overlap. We address these multi-speaker challenges by a novel attention-based encoder-decoder method augmented with special speaker class tokens obtained by speaker clustering. During inference, we select multiple recognition hypotheses conditioned on predicted speaker cluster tokens, and these hypotheses are merged by agglomerative hierarchical clustering (AHC) based on the normalized edit distance. The clustered hypotheses result in the multi-speaker transcriptions with the appropriate number of speakers determined by AHC. Our experiments on the LibriMix dataset demonstrate that our proposed method was particularly effective in complex 3-mix environments, achieving a 55% relative error reduction on clean data and a 36% relative error reduction on noisy data compared with conventional serialized output training.

View on arXiv
Comments on this paper