ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.17043
41
0

Gaussian Processes for Observational Dose-Response Inference

25 September 2024
Jake R. Dailey
ArXiv (abs)PDFHTML
Abstract

We adapt Gaussian processes for estimating the average dose-response function in observational settings, introducing a powerful complement to treatment effect estimation for understanding heterogeneous effects. We incorporate samples from a Gaussian process posterior for the propensity score into a Gaussian process response model using Girard's approach to integrating over uncertainty in training data. We show Girard's method admits a positive-definite kernel, and provide theoretical justification by identifying it with an inner product of kernel mean embeddings. We demonstrate double robustness of our approach under a misspecified response function or propensity score. We characterize and mitigate regularization-induced confounding in Gaussian process response models. We show improvement over other methods for average dose-response function estimation in terms of coverage of the dose-response function and estimation bias, with less sensitivity to misspecification across experiments.

View on arXiv
Comments on this paper