Due to intensive genetic selection for rapid growth rates and high broiler
yields in recent years, the global poultry industry has faced a challenging
problem in the form of woody breast (WB) conditions. This condition has caused
significant economic losses as high as 200millionannually,andtherootcauseofWBhasyettobeidentified.HumanpalpationisthemostcommonmethodofdistinguishingaWBfromothers.However,thismethodistime−consumingandsubjective.Hyperspectralimaging(HSI)combinedwithmachinelearningalgorithmscanevaluatetheWBconditionsoffilletsinanon−invasive,objective,andhigh−throughputmanner.Inthisstudy,250rawchickenbreastfilletsamples(normal,mild,severe)weretaken,andspatiallyheterogeneoushardnessdistributionwasfirstconsideredwhendesigningHSIprocessingmodels.ThestudynotonlyclassifiedtheWBlevelsfromHSIbutalsobuiltaregressionmodeltocorrelatethespectralinformationwithsamplehardnessdata.Toachieveasatisfactoryclassificationandregressionmodel,aneuralnetworkarchitecturesearch(NAS)enabledawide−deepneuralnetworkmodelnamedNAS−WD,whichwasdeveloped.InNAS−WD,NASwasfirstusedtoautomaticallyoptimizethenetworkarchitectureandhyperparameters.TheclassificationresultsshowthatNAS−WDcanclassifythethreeWBlevelswithanoverallaccuracyof95model,andtheregressioncorrelationbetweenthespectraldataandhardnesswas0.75,whichperformssignificantlybetterthantraditionalregressionmodels.