282
v1v2 (latest)

SpoofCeleb: Speech Deepfake Detection and SASV In The Wild

IEEE Open Journal of Signal Processing (JOSP), 2024
Main:8 Pages
3 Figures
Bibliography:2 Pages
10 Tables
Abstract

This paper introduces SpoofCeleb, a dataset designed for Speech Deepfake Detection (SDD) and Spoofing-robust Automatic Speaker Verification (SASV), utilizing source data from real-world conditions and spoofing attacks generated by Text-To-Speech (TTS) systems also trained on the same real-world data. Robust recognition systems require speech data recorded in varied acoustic environments with different levels of noise to be trained. However, current datasets typically include clean, high-quality recordings (bona fide data) due to the requirements for TTS training; studio-quality or well-recorded read speech is typically necessary to train TTS models. Current SDD datasets also have limited usefulness for training SASV models due to insufficient speaker diversity. SpoofCeleb leverages a fully automated pipeline we developed that processes the VoxCeleb1 dataset, transforming it into a suitable form for TTS training. We subsequently train 23 contemporary TTS systems. SpoofCeleb comprises over 2.5 million utterances from 1,251 unique speakers, collected under natural, real-world conditions. The dataset includes carefully partitioned training, validation, and evaluation sets with well-controlled experimental protocols. We present the baseline results for both SDD and SASV tasks. All data, protocols, and baselines are publicly available atthis https URL.

View on arXiv
Comments on this paper