ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.17746
25
0

Paraformer-v2: An improved non-autoregressive transformer for noise-robust speech recognition

26 September 2024
Keyu An
Zerui Li
Zhifu Gao
Shiliang Zhang
ArXivPDFHTML
Abstract

Attention-based encoder-decoder, e.g. transformer and its variants, generates the output sequence in an autoregressive (AR) manner. Despite its superior performance, AR model is computationally inefficient as its generation requires as many iterations as the output length. In this paper, we propose Paraformer-v2, an improved version of Paraformer, for fast, accurate, and noise-robust non-autoregressive speech recognition. In Paraformer-v2, we use a CTC module to extract the token embeddings, as the alternative to the continuous integrate-and-fire module in Paraformer. Extensive experiments demonstrate that Paraformer-v2 outperforms Paraformer on multiple datasets, especially on the English datasets (over 14% improvement on WER), and is more robust in noisy environments.

View on arXiv
Comments on this paper