ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.18457
26
1

DynaWeightPnP: Toward global real-time 3D-2D solver in PnP without correspondences

27 September 2024
Jingwei Song
Maani Ghaffari
    3DH
ArXivPDFHTML
Abstract

This paper addresses a special Perspective-n-Point (PnP) problem: estimating the optimal pose to align 3D and 2D shapes in real-time without correspondences, termed as correspondence-free PnP. While several studies have focused on 3D and 2D shape registration, achieving both real-time and accurate performance remains challenging. This study specifically targets the 3D-2D geometric shape registration tasks, applying the recently developed Reproducing Kernel Hilbert Space (RKHS) to address the "big-to-small" issue. An iterative reweighted least squares method is employed to solve the RKHS-based formulation efficiently. Moreover, our work identifies a unique and interesting observability issue in correspondence-free PnP: the numerical ambiguity between rotation and translation. To address this, we proposed DynaWeightPnP, introducing a dynamic weighting sub-problem and an alternative searching algorithm designed to enhance pose estimation and alignment accuracy. Experiments were conducted on a typical case, that is, a 3D-2D vascular centerline registration task within Endovascular Image-Guided Interventions (EIGIs). Results demonstrated that the proposed algorithm achieves registration processing rates of 60 Hz (without post-refinement) and 31 Hz (with post-refinement) on modern single-core CPUs, with competitive accuracy comparable to existing methods. These results underscore the suitability of DynaWeightPnP for future robot navigation tasks like EIGIs.

View on arXiv
Comments on this paper