ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.18974
26
0

Neural Product Importance Sampling via Warp Composition

12 September 2024
Joey Litalien
Miloš Hašan
Fujun Luan
Krishna Mullia
Iliyan Georgiev
ArXivPDFHTML
Abstract

Achieving high efficiency in modern photorealistic rendering hinges on using Monte Carlo sampling distributions that closely approximate the illumination integral estimated for every pixel. Samples are typically generated from a set of simple distributions, each targeting a different factor in the integrand, which are combined via multiple importance sampling. The resulting mixture distribution can be far from the actual product of all factors, leading to sub-optimal variance even for direct-illumination estimation. We present a learning-based method that uses normalizing flows to efficiently importance sample illumination product integrals, e.g., the product of environment lighting and material terms. Our sampler composes a flow head warp with an emitter tail warp. The small conditional head warp is represented by a neural spline flow, while the large unconditional tail is discretized per environment map and its evaluation is instant. If the conditioning is low-dimensional, the head warp can be also discretized to achieve even better performance. We demonstrate variance reduction over prior methods on a range of applications comprising complex geometry, materials and illumination.

View on arXiv
Comments on this paper