Harnessing Large Language Models: Fine-tuned BERT for Detecting
Charismatic Leadership Tactics in Natural Language

This work investigates the identification of Charismatic Leadership Tactics (CLTs) in natural language using a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model. Based on an own extensive corpus of CLTs generated and curated for this task, our methodology entails training a machine learning model that is capable of accurately identifying the presence of these tactics in natural language. A performance evaluation is conducted to assess the effectiveness of our model in detecting CLTs. We find that the total accuracy over the detection of all CLTs is 98.96\% The results of this study have significant implications for research in psychology and management, offering potential methods to simplify the currently elaborate assessment of charisma in texts.
View on arXiv