ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.19042
16
0

Probing mental health information in speech foundation models

27 September 2024
Marc de Gennes
Adrien Lesage
Martin Denais
Xuan-Nga Cao
Simon Chang
Pierre Van Remoortere
Cyrille Dakhlia
Rachid Riad
ArXivPDFHTML
Abstract

Non-invasive methods for diagnosing mental health conditions, such as speech analysis, offer promising potential in modern medicine. Recent advancements in machine learning, particularly speech foundation models, have shown significant promise in detecting mental health states by capturing diverse features. This study investigates which pretext tasks in these models best transfer to mental health detection and examines how different model layers encode features relevant to mental health conditions. We also probed the optimal length of audio segments and the best pooling strategies to improve detection accuracy. Using the Callyope-GP and Androids datasets, we evaluated the models' effectiveness across different languages and speech tasks, aiming to enhance the generalizability of speech-based mental health diagnostics. Our approach achieved SOTA scores in depression detection on the Androids dataset.

View on arXiv
Comments on this paper