ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2409.19671
16
0

Nonideality-aware training makes memristive networks more robust to adversarial attacks

29 September 2024
Dovydas Joksas
Luis Muñoz-González
Emil C. Lupu
Adnan Mehonic
    AAML
ArXivPDFHTML
Abstract

Neural networks are now deployed in a wide number of areas from object classification to natural language systems. Implementations using analog devices like memristors promise better power efficiency, potentially bringing these applications to a greater number of environments. However, such systems suffer from more frequent device faults and overall, their exposure to adversarial attacks has not been studied extensively. In this work, we investigate how nonideality-aware training - a common technique to deal with physical nonidealities - affects adversarial robustness. We find that adversarial robustness is significantly improved, even with limited knowledge of what nonidealities will be encountered during test time.

View on arXiv
Comments on this paper