ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.00171
16
3

Basis-to-Basis Operator Learning Using Function Encoders

30 September 2024
Tyler Ingebrand
Adam J. Thorpe
Somdatta Goswami
Krishna Kumar
Ufuk Topcu
ArXivPDFHTML
Abstract

We present Basis-to-Basis (B2B) operator learning, a novel approach for learning operators on Hilbert spaces of functions based on the foundational ideas of function encoders. We decompose the task of learning operators into two parts: learning sets of basis functions for both the input and output spaces and learning a potentially nonlinear mapping between the coefficients of the basis functions. B2B operator learning circumvents many challenges of prior works, such as requiring data to be at fixed locations, by leveraging classic techniques such as least squares to compute the coefficients. It is especially potent for linear operators, where we compute a mapping between bases as a single matrix transformation with a closed-form solution. Furthermore, with minimal modifications and using the deep theoretical connections between function encoders and functional analysis, we derive operator learning algorithms that are directly analogous to eigen-decomposition and singular value decomposition. We empirically validate B2B operator learning on seven benchmark operator learning tasks and show that it demonstrates a two-orders-of-magnitude improvement in accuracy over existing approaches on several benchmark tasks.

View on arXiv
Comments on this paper