276
v1v2 (latest)

On the Geometry and Optimization of Polynomial Convolutional Networks

International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Main:8 Pages
3 Figures
Bibliography:2 Pages
1 Tables
Appendix:4 Pages
Abstract

We study convolutional neural networks with monomial activation functions. Specifically, we prove that their parameterization map is regular and is an isomorphism almost everywhere, up to rescaling the filters. By leveraging on tools from algebraic geometry, we explore the geometric properties of the image in function space of this map - typically referred to as neuromanifold. In particular, we compute the dimension and the degree of the neuromanifold, which measure the expressivity of the model, and describe its singularities. Moreover, for a generic large dataset, we derive an explicit formula that quantifies the number of critical points arising in the optimization of a regression loss.

View on arXiv
Comments on this paper