48
0

Model-guided Fuzzing of Distributed Systems

Abstract

We present a coverage-guided testing algorithm for distributed systems implementations. Our main innovation is the use of an abstract formal model of the system that is used to define coverage. Such abstract models are frequently developed in early phases of protocol design and verification but are infrequently used at testing time. We show that guiding random test generation using model coverage can be effective in covering interesting points in the implementation state space. We have implemented a fuzzer for distributed system implementations and abstract models written in TLA+. Our algorithm shows better coverage over purely random exploration as well as random exploration guided by different notions of scheduler coverage and mutation. In particular, we show consistently higher coverage and detect bugs faster on implementations of distributed consensus protocols such as those in Etcd-raft and RedisRaft. Moreover, we discovered 13 previously unknown bugs in their implementations, four of which could only be detected by model-guided fuzzing.

View on arXiv
Comments on this paper