ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.02456
32
1

Recurrent Few-Shot model for Document Verification

3 October 2024
Maxime Talarmain
Carlos Boned
Sanket Biswas
Oriol Ramos
ArXivPDFHTML
Abstract

General-purpose ID, or travel, document image- and video-based verification systems have yet to achieve good enough performance to be considered a solved problem. There are several factors that negatively impact their performance, including low-resolution images and videos and a lack of sufficient data to train the models. This task is particularly challenging when dealing with unseen class of ID, or travel, documents. In this paper we address this task by proposing a recurrent-based model able to detect forged documents in a few-shot scenario. The recurrent architecture makes the model robust to document resolution variability. Moreover, the few-shot approach allow the model to perform well even for unseen class of documents. Preliminary results on the SIDTD and Findit datasets show good performance of this model for this task.

View on arXiv
Comments on this paper