Recent advances in robotics are driving real-world autonomy for long-term and large-scale missions, where loop closures via place recognition are vital for mitigating pose estimation drift. However, achieving real-time performance remains challenging for resource-constrained mobile robots and multi-robot systems due to the computational burden of high-density sampling, which increases the complexity of comparing and verifying query samples against a growing map database. Conventional methods often retain redundant information or miss critical data by relying on fixed sampling intervals or operating in 3-D space instead of the descriptor feature space. To address these challenges, we introduce the concept of sample space and propose a novel keyframe sampling approach for LiDAR-based place recognition. Our method minimizes redundancy while preserving essential information in the hyper-dimensional descriptor space, supporting both learning-based and handcrafted descriptors. The proposed approach incorporates a sliding window optimization strategy to ensure efficient keyframe selection and real-time performance, enabling seamless integration into robotic pipelines. In sum, our approach demonstrates robust performance across diverse datasets, with the ability to adapt seamlessly from indoor to outdoor scenarios without parameter tuning, reducing loop closure detection times and memory requirements.
View on arXiv@article{stathoulopoulos2025_2410.02643, title={ Why Sample Space Matters: Keyframe Sampling Optimization for LiDAR-based Place Recognition }, author={ Nikolaos Stathoulopoulos and Vidya Sumathy and Christoforos Kanellakis and George Nikolakopoulos }, journal={arXiv preprint arXiv:2410.02643}, year={ 2025 } }