ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.03053
30
0

The Quadratic Optimization Bias Of Large Covariance Matrices

4 October 2024
Hubeyb Gurdogan
Alex Shkolnik
ArXivPDFHTML
Abstract

We describe a puzzle involving the interactions between an optimization of a multivariate quadratic function and a "plug-in" estimator of a spiked covariance matrix. When the largest eigenvalues (i.e., the spikes) diverge with the dimension, the gap between the true and the out-of-sample optima typically also diverges. We show how to "fine-tune" the plug-in estimator in a precise way to avoid this outcome. Central to our description is a "quadratic optimization bias" function, the roots of which determine this fine-tuning property. We derive an estimator of this root from a finite number of observations of a high dimensional vector. This leads to a new covariance estimator designed specifically for applications involving quadratic optimization. Our theoretical results have further implications for improving low dimensional representations of data, and principal component analysis in particular.

View on arXiv
Comments on this paper