All Papers
Title |
|---|
Title |
|---|

The rapid proliferation of frontier model agents promises significant societal advances but also raises concerns about systemic risks arising from unsafe interactions. Collusion to the disadvantage of others has been identified as a central form of undesirable agent cooperation. The use of information hiding (steganography) in agent communications could render such collusion practically undetectable. This underscores the need for investigations into the possibility of such behaviours emerging and the robustness corresponding countermeasures. To investigate this problem we design two approaches -- a gradient-based reinforcement learning (GBRL) method and an in-context reinforcement learning (ICRL) method -- for reliably eliciting sophisticated LLM-generated linguistic text steganography.We demonstrate, for the first time, that unintended steganographic collusion in LLMs can arise due to mispecified reward incentives during training. Additionally, we find that standard mitigations -- both passive oversight of model outputs and active mitigation through communication paraphrasing -- are not fully effective at preventing this steganographic communication. Our findings imply that (i) emergence of steganographic collusion is a plausible concern that should be monitored and researched, and (ii) preventing emergence may require innovation in mitigation techniques.
View on arXiv