ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.05017
19
0

Enhanced Multi-Robot SLAM System with Cross-Validation Matching and Exponential Threshold Keyframe Selection

7 October 2024
Ang He
Xi-mei Wu
Xiao-bin Guo
Li-bin Liu
ArXivPDFHTML
Abstract

The evolving field of mobile robotics has indeed increased the demand for simultaneous localization and mapping (SLAM) systems. To augment the localization accuracy and mapping efficacy of SLAM, we refined the core module of the SLAM system. Within the feature matching phase, we introduced cross-validation matching to filter out mismatches. In the keyframe selection strategy, an exponential threshold function is constructed to quantify the keyframe selection process. Compared with a single robot, the multi-robot collaborative SLAM (CSLAM) system substantially improves task execution efficiency and robustness. By employing a centralized structure, we formulate a multi-robot SLAM system and design a coarse-to-fine matching approach for multi-map point cloud registration. Our system, built upon ORB-SLAM3, underwent extensive evaluation utilizing the TUM RGB-D, EuRoC MAV, and TUM_VI datasets. The experimental results demonstrate a significant improvement in the positioning accuracy and mapping quality of our enhanced algorithm compared to those of ORB-SLAM3, with a 12.90% reduction in the absolute trajectory error.

View on arXiv
Comments on this paper