ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.05586
22
0

TeaserGen: Generating Teasers for Long Documentaries

8 October 2024
Weihan Xu
Paul Pu Liang
Haven Kim
Julian McAuley
Taylor Berg-Kirkpatrick
Hao-Wen Dong
    VGen
    VLM
    DiffM
ArXivPDFHTML
Abstract

Teasers are an effective tool for promoting content in entertainment, commercial and educational fields. However, creating an effective teaser for long videos is challenging for it requires long-range multimodal modeling on the input videos, while necessitating maintaining audiovisual alignments, managing scene changes and preserving factual accuracy for the output teasers. Due to the lack of a publicly-available dataset, progress along this research direction has been hindered. In this work, we present DocumentaryNet, a collection of 1,269 documentaries paired with their teasers, featuring multimodal data streams of video, speech, music, sound effects and narrations. With DocumentaryNet, we propose a new two-stage system for generating teasers from long documentaries. The proposed TeaserGen system first generates the teaser narration from the transcribed narration of the documentary using a pretrained large language model, and then selects the most relevant visual content to accompany the generated narration through language-vision models. For narration-video matching, we explore two approaches: a pretraining-based model using pretrained contrastive language-vision models and a deep sequential model that learns the mapping between the narrations and visuals. Our experimental results show that the pretraining-based approach is more effective at identifying relevant visual content than directly trained deep autoregressive models.

View on arXiv
Comments on this paper