ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.07222
23
1

Computing Systemic Risk Measures with Graph Neural Networks

30 September 2024
Lukas Gonon
Thilo Meyer-Brandis
Niklas Weber
ArXivPDFHTML
Abstract

This paper investigates systemic risk measures for stochastic financial networks of explicitly modelled bilateral liabilities. We extend the notion of systemic risk measures from Biagini, Fouque, Fritelli and Meyer-Brandis (2019) to graph structured data. In particular, we focus on an aggregation function that is derived from a market clearing algorithm proposed by Eisenberg and Noe (2001). In this setting, we show the existence of an optimal random allocation that distributes the overall minimal bailout capital and secures the network. We study numerical methods for the approximation of systemic risk and optimal random allocations. We propose to use permutation equivariant architectures of neural networks like graph neural networks (GNNs) and a class that we name (extended) permutation equivariant neural networks ((X)PENNs). We compare their performance to several benchmark allocations. The main feature of GNNs and (X)PENNs is that they are permutation equivariant with respect to the underlying graph data. In numerical experiments we find evidence that these permutation equivariant methods are superior to other approaches.

View on arXiv
Comments on this paper