ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.07549
32
1

OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting

10 October 2024
Xukai Liu
Ye Liu
Kai Zhang
Kehang Wang
Qi Liu
Enhong Chen
ArXivPDFHTML
Abstract

Entity Linking (EL) is the process of associating ambiguous textual mentions to specific entities in a knowledge base. Traditional EL methods heavily rely on large datasets to enhance their performance, a dependency that becomes problematic in the context of few-shot entity linking, where only a limited number of examples are available for training. To address this challenge, we present OneNet, an innovative framework that utilizes the few-shot learning capabilities of Large Language Models (LLMs) without the need for fine-tuning. To the best of our knowledge, this marks a pioneering approach to applying LLMs to few-shot entity linking tasks. OneNet is structured around three key components prompted by LLMs: (1) an entity reduction processor that simplifies inputs by summarizing and filtering out irrelevant entities, (2) a dual-perspective entity linker that combines contextual cues and prior knowledge for precise entity linking, and (3) an entity consensus judger that employs a unique consistency algorithm to alleviate the hallucination in the entity linking reasoning. Comprehensive evaluations across seven benchmark datasets reveal that OneNet outperforms current state-of-the-art entity linking methods.

View on arXiv
Comments on this paper