ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.07751
33
0

Learning Low-Level Causal Relations using a Simulated Robotic Arm

10 October 2024
Miroslav Cibula
Matthias Kerzel
Igor Farkaš
    CML
ArXiv (abs)PDFHTML
Abstract

Causal learning allows humans to predict the effect of their actions on the known environment and use this knowledge to plan the execution of more complex actions. Such knowledge also captures the behaviour of the environment and can be used for its analysis and the reasoning behind the behaviour. This type of knowledge is also crucial in the design of intelligent robotic systems with common sense. In this paper, we study causal relations by learning the forward and inverse models based on data generated by a simulated robotic arm involved in two sensorimotor tasks. As a next step, we investigate feature attribution methods for the analysis of the forward model, which reveals the low-level causal effects corresponding to individual features of the state vector related to both the arm joints and the environment features. This type of analysis provides solid ground for dimensionality reduction of the state representations, as well as for the aggregation of knowledge towards the explainability of causal effects at higher levels.

View on arXiv
Comments on this paper