ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.08453
24
4

AdvDiffuser: Generating Adversarial Safety-Critical Driving Scenarios via Guided Diffusion

11 October 2024
Yuting Xie
Xianda Guo
Cong Wang
Kunhua Liu
Long Chen
    AAML
ArXivPDFHTML
Abstract

Safety-critical scenarios are infrequent in natural driving environments but hold significant importance for the training and testing of autonomous driving systems. The prevailing approach involves generating safety-critical scenarios automatically in simulation by introducing adversarial adjustments to natural environments. These adjustments are often tailored to specific tested systems, thereby disregarding their transferability across different systems. In this paper, we propose AdvDiffuser, an adversarial framework for generating safety-critical driving scenarios through guided diffusion. By incorporating a diffusion model to capture plausible collective behaviors of background vehicles and a lightweight guide model to effectively handle adversarial scenarios, AdvDiffuser facilitates transferability. Experimental results on the nuScenes dataset demonstrate that AdvDiffuser, trained on offline driving logs, can be applied to various tested systems with minimal warm-up episode data and outperform other existing methods in terms of realism, diversity, and adversarial performance.

View on arXiv
Comments on this paper