ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.08559
18
1

Learning General Representation of 12-Lead Electrocardiogram with a Joint-Embedding Predictive Architecture

11 October 2024
Sehun Kim
ArXivPDFHTML
Abstract

We propose a self-supervised learning method for 12-lead Electrocardiogram (ECG) analysis, named ECG Joint Embedding Predictive Architecture (ECG-JEPA). ECG-JEPA employs a masking strategy to learn semantic representations of ECG data. Unlike existing methods, ECG-JEPA predicts at the hidden representation level rather than reconstructing raw data. This approach offers several advantages in the ECG domain: (1) it avoids producing unnecessary details, such as noise, which is common in standard ECG; and (2) it addresses the limitations of na\"ive L2 loss between raw signals. Another key contribution is the introduction of a special masked attention tailored for 12-lead ECG data, Cross-Pattern Attention (CroPA). CroPA enables the model to effectively capture inter-patch relationships. Additionally, ECG-JEPA is highly scalable, allowing efficient training on large datasets. Our code is openly available https://github.com/sehunfromdaegu/ECG_JEPA.

View on arXiv
Comments on this paper