ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2410.08977
11
0

Online-to-PAC generalization bounds under graph-mixing dependencies

11 October 2024
Baptiste Abeles
Eugenio Clerico
Gergely Neu
ArXivPDFHTML
Abstract

Traditional generalization results in statistical learning require a training data set made of independently drawn examples. Most of the recent efforts to relax this independence assumption have considered either purely temporal (mixing) dependencies, or graph-dependencies, where non-adjacent vertices correspond to independent random variables. Both approaches have their own limitations, the former requiring a temporal ordered structure, and the latter lacking a way to quantify the strength of inter-dependencies. In this work, we bridge these two lines of work by proposing a framework where dependencies decay with graph distance. We derive generalization bounds leveraging the online-to-PAC framework, by deriving a concentration result and introducing an online learning framework incorporating the graph structure. The resulting high-probability generalization guarantees depend on both the mixing rate and the graph's chromatic number.

View on arXiv
Comments on this paper