Agentic Information Retrieval

Since the 1970s, information retrieval (IR) has long been defined as the process of acquiring relevant information items from a pre-defined corpus to satisfy user information needs. Traditional IR systems, while effective in domains like web search, are constrained by their reliance on static, pre-defined information items. To this end, this paper introduces agentic information retrieval (Agentic IR), a transformative next-generation paradigm for IR driven by large language models (LLMs) and AI agents. The central shift in agentic IR is the evolving definition of ``information'' from static, pre-defined information items to dynamic, context-dependent information states. Information state refers to a particular information context that the user is right in within a dynamic environment, encompassing not only the acquired information items but also real-time user preferences, contextual factors, and decision-making processes. In such a way, traditional information retrieval, focused on acquiring relevant information items based on user queries, can be naturally extended to achieving the target information state given the user instruction, which thereby defines the agentic information retrieval. We systematically discuss agentic IR from various aspects, i.e., task formulation, architecture, evaluation, case studies, as well as challenges and future prospects. We believe that the concept of agentic IR introduced in this paper not only broadens the scope of information retrieval research but also lays the foundation for a more adaptive, interactive, and intelligent next-generation IR paradigm.
View on arXiv@article{zhang2025_2410.09713, title={ Agentic Information Retrieval }, author={ Weinan Zhang and Junwei Liao and Ning Li and Kounianhua Du and Jianghao Lin }, journal={arXiv preprint arXiv:2410.09713}, year={ 2025 } }